Privacy Preserving PageRank Algorithm By Using Secure Multi-Party Computation

نویسنده

  • Ferhat Özgür Çatak
چکیده

In this work, we study the problem of privacy preserving computation on PageRank algorithm. The idea is to enforce the secure multi party computation of the algorithm iteratively using homomorphic encryption based on Paillier scheme. In the proposed PageRank computation, a user encrypt its own graph data using asymmetric encryption method, sends the data set into different parties in a privacy-preserving manner. Each party computes its own encrypted entity, but learns nothing about the data at other parties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy-Preserving Distributed Data Mining Techniques: A Survey

In various distributed data mining settings, leakage of the real data is not adequate because of privacy issues. To overcome this problem, numerous privacy-preserving distributed data mining practices have been suggested such as protect privacy of their data by perturbing it with a randomization algorithm and using cryptographic techniques. In this paper, we review and provide extensive survey ...

متن کامل

A Method for Privacy Preserving Data Mining in Secure Multiparty Computation using Hadamard Matrix

Secure multiparty computation allows multiple parties to participate in a computation. SMC (secure multiparty computation) assumes n parties where n>1. All the parties jointly compute a function. Privacy preserving data mining has become an emerging field in the secure multiparty computation. Privacy preserving data mining preserves the privacy of individual's data. Privacy preserving data mini...

متن کامل

Privacy-Preserving Classification and Clustering Using Secure Multi-Party Computation

Nowadays, data mining and machine learning techniques are widely used in electronic applications in different areas such as e-government, e-health, e-business, and so on. One major and very crucial issue in these type of systems, which are normally distributed among two or more parties and are dealing with sensitive data, is preserving the privacy of individual’s sensitive information. Each par...

متن کامل

MPC meets SNA: A Privacy Preserving Analysis of Distributed Sensitive Social Networks

In this paper, we formalize the notion of distributed sensitive social networks (DSSNs), which encompasses networks like enmity networks, financial transaction networks, supply chain networks and sexual relationship networks. Compared to the well studied traditional social networks, DSSNs are often more challenging to study, given the privacy concerns of the individuals on whom the network is k...

متن کامل

Rmind: a tool for cryptographically secure statistical analysis

Secure multi-party computation platforms are becoming more and more practical. This has paved the way for privacy-preserving statistical analysis using secure multi-party computation. Simple statistical analysis functions have been emerging here and there in literature, but no comprehensive system has been compiled. We describe and implement the most used statistical analysis functions in the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1611.01907  شماره 

صفحات  -

تاریخ انتشار 2016